Deep Denoising of Flash and No-Flash Pairs for
Photography in Low-Light Environments
CVPR 2021

Example Results

Overview

We introduce a neural network-based method to denoise pairs of images taken in quick succession in low-light environments, with and without a flash. Our goal is to produce a high-quality rendering of the scene that preserves the color and mood from the ambient illumination of the noisy no-flash image, while recovering surface texture and detail revealed by the flash. Our network outputs a gain map and a field of kernels, the latter obtained by linearly mixing elements of a per-image low-rank kernel basis. We first apply the kernel field to the no-flash image, and then multiply the result with the gain map to create the final output. We show our network effectively learns to produce high-quality images by combining a smoothed out estimate of the scene's ambient appearance from the no-flash image, with high-frequency albedo details extracted from the flash input. Our experiments show significant improvements over alternative captures without a flash, and baseline denoisers that use flash no-flash pairs. In particular, our method produces images that are both noise-free and contain accurate ambient colors without the sharp shadows or strong specular highlights visible in the flash image.

overview

BibTeX

Acknowledgements

ZX and AC acknowledge support from the National Science Foundation under award no. IIS-1820693, and from a generous gift funding from Adobe Research. The website template was borrowed from Michaël Gharbi.